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Fire-mediated dieback and compositional
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The only fully coupled land–atmosphere global climate model predicts a widespread dieback of
Amazonian forest cover through reduced precipitation. Although these predictions are controversial,
the structural and compositional resilience of Amazonian forests may also have been overestimated,
as current vegetation models fail to consider the potential role of fire in the degradation of forest
ecosystems. We examine forest structure and composition in the Arapiuns River basin in the central
Brazilian Amazon, evaluating post-fire forest recovery and the consequences of recurrent fires for the
patterns of dominance of tree species. We surveyed tree plots in unburned and once-burned forests
examined 1, 3 and 9 years after an unprecedented fire event, in twice-burned forests examined 3 and
9 years after fire and in thrice-burned forests examined 5 years after the most recent fire event. The
number of trees recorded in unburned primary forest control plots was stable over time. However, in
both once- and twice-burned forest plots, there was a marked recruitment into the 10–20 cm
diameter at breast height tree size classes between 3 and 9 years post-fire. Considering tree
assemblage composition 9 years after the first fire contact, we observed (i) a clear pattern of
community turnover among small trees and the most abundant shrubs and saplings, and (ii) that
species that were common in any of the four burn treatments (unburned, once-, twice- and thrice-
burned) were often rare or entirely absent in other burn treatments. We conclude that episodic
wildfires can lead to drastic changes in forest structure and composition, with cascading shifts in
forest composition following each additional fire event. Finally, we use these results to evaluate the
validity of the savannization paradigm.
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1. INTRODUCTION
The only fully coupled land–atmosphere global climate

model that is currently available predicts a large-scale

and substantial reduction in precipitation over the

Amazon Basin during the twenty-first century, leading

to a widespread dieback of forest vegetation (Betts et al.
2004; Cox et al. 2004). These catastrophic predictions

are highly controversial, not least because the

thresholds for drought-mediated dieback remain highly

uncertain, and are currently based upon a single digital

vegetation model (TRIFFID) that is not consistent

with the long-term historical stability of core Amazo-

nian forests (Haberle & Maslin 1999; Sternberg 2001)

and may underestimate forest resilience to drought

(e.g. Nepstad et al. 2007; Saleska et al. 2007).

Conversely, the structural and compositional resi-

lience of Amazonian forests may have been over-

estimated, as the vegetation models fail to consider
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the potential role of fire in the degradation of forest
ecosystems (Betts et al. 2004). Fire plays a significant
role in tropical ecosystems and is a major evolutionary
force shaping the structure and composition of forests
worldwide (Bond & Keeley 2005), and the geographi-
cal extent of many tropical rainforests is limited by fire
as well as edaphic and climatic factors (Bowman 2000;
Hoffmann & Moreira 2002; Russell-Smith et al. 2004).
Furthermore, most tropical rainforest trees are
poorly adapted to fire stress, and even low-intensity
forest wildfires can lead to the mortality of more than
40% of stems 10 cm and above in diameter at breast
height (DBH; see Barlow & Peres (2006a) for a review
of studies).

Many of the ongoing and predicted changes in the
Amazonian climate increase the risk of fires spreading
into forests. For example, climate change is likely to
be accompanied by increased air temperature and dry
season length over large regions of the Amazon forest
(Cox et al. 2004), and a probable increased frequency
of severe seasonal droughts initiated by El Niño–
Southern Oscillation (ENSO) events and Atlantic sea
surface temperature (SST) anomalies (Li et al.
2006). These severe supra-annual droughts are
known to both augment and further desiccate the
This journal is q 2008 The Royal Society
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available fuel load, forcing forests over the flamm-
ability threshold (Nepstad et al. 2004; Ray et al.
2005) with potentially disastrous consequences. An
estimated 20 Mha of tropical forest in South America
and Southeast Asia succumbed to drought-induced
fires as a consequence of the 1997–1998 ENSO event
(see Barbosa & Fearnside 1999; Cochrane et al.
1999; Siegert et al. 2001; Page et al. 2002; Cochrane
2003; Alencar et al. 2006), and the extreme 2005
drought—triggered primarily by elevated middle
Atlantic SST anomalies—led to a rapid prolifera-
tion of fires in normally fire-resistant parts of
southwestern Amazonia (Aragão et al. 2008).

Many of the ongoing changes in anthropogenic activity
either facilitate or directly increase the spread of fire
(Cardoso et al. 2003). For example, large-scale forest
clearance leads to reduced precipitation (Oyama & Nobre
2003), and edge creation and selective logging increase
forest flammability (Uhl & Buschbacher 1985; Nepstad
et al. 1999; Cochrane & Laurance 2002; Alencar et al.
2006). Moreover, many deforested areas are sub-
sequently replaced by secondary forests (e.g. Lucas
et al. 2000), which can become rapidly desiccated and
flammable during dry periods (Ray et al. 2005). Finally,
the increased physical access across previously undis-
turbed parts of the Amazon through mega-development
projects (e.g. Peres 2001) encourages the immigration
and spread of human populations dominated by small-
scale farmers who routinely use fires to clear agricultural
plots (e.g. Nepstad et al. 2001; Cardoso et al. 2003). This
frontier expansion increases the susceptibility of forests
to fires and provides the ignition sources that are
responsible for initiating most fires.

The aim of this paper is to assess the potential fate of
the Amazon forest under drier climatic conditions by
examining the long-term consequences of contempor-
ary wildfires. We evaluate post-fire forest recovery and
the consequences of recurrent fires for the patterns of
dominance of tree species by surveying tree plots in
unburned and once-burned forests examined 1, 3 and
9 years after fire, in twice-burned forests examined 3
and 9 years after fire and in thrice-burned forests
examined 5 years after the most recent fire event.
Specifically, we evaluate the post-fire forest recovery
trajectories in terms of stem density, and the con-
sequences of recurrent fires for the abundance of the
dominant tree species. Finally, we use this novel
dataset to re-evaluate the potential outcome of a
widespread fire-mediated vegetation dieback in terms
of a largely irreversible phase shift in Amazonian
forest ecosystems.
2. MATERIAL AND METHODS
This study took place in the Rio Maró basin of westernmost

Pará, central Brazilian Amazonia (2844 0 S, 55841 0 W). This

region is dominated by dense lowland non-flooded (terra

firme) forests, but includes small enclaves of edaphic

savannahs (campinarana) on white-sand soils, and narrow

portions of seasonally flooded forests (igapó) along the Rio

Maró. The forest plots inventoried in this study are

classified as yellow latosols of medium texture (according

to the Brazilian soil classification system; EMBRAPA 1981),

and have a high (but variable) sand fraction and a relatively

low moisture retention capacity ( J. Barlow & C. Peres 1998,
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unpublished data). The climate is characterized by a rainfall

of 2041 mm yrK1 (range 1287–2538 mm yrK1; 1992–1997)

and a strongly demarcated dry season lasting three to five

months (see Barlow & Peres 2006b).

The modern history of forest wildfires in this region dates

from the early 1990s, when fires escaped from ‘roçados’ (small

agricultural clearings) into the surrounding forest. Arguably,

the most important fire events in the twentieth century

occurred between October and December 1997, at the end

of the longest dry season in living memory. These fires affected

w1100 km2 of logged and unlogged primary forests, pre-

viously burned forests (providing our twice-burned treatment)

and secondary forests in the Rio Arapiuns–Maró basin (Peres

1999; Nelson 2001). Additional severe dry seasons (especially

2001–2002) have led to recent wildfires in the last decade

(providing our thrice-burned treatment), but these fires were

less extensive and more patchy than those of late 1997.

In 2007, we recensused twelve 0.25 ha forest plots

(10!250 m) that had been examined at least once previously,

including four plots located in unburned forests, four in once-

burned forests, two in twice-burned forests and two in thrice-

burned forests. The unburned and once-burned plots were

established in 1998–1999, one year after the 1997–1998 fires,

and were resampled both 3 and 9 years after these fires (in

2001–2002 and 2007). The twice-burned forest plots first

burned in the early 1990s, and were first sampled 3 years after

the second fire (in 2001–2002) and resampled 9 years after

the second fire (in 2007). The thrice-burned forest plots were

sampled in 2007, 5 years after they had burned for the third

time. Where our previously georeferenced rectangular plots

were no longer obvious (i.e. in twice-burned forests), the

transect points marking the beginning and the end of each

plot were relocated using a global positioning system and its

original compass bearing.

We recorded all trees and lianas 10 cm and above in DBH

in each plot, but excluded those stems with more than half of

their basal trunk outside the plot. Diameter measurements

were taken at breast height (approx. 1.3 m), or immediately

above the tallest buttress whenever this exceeded 1.3 m.

During the 2007 field campaign, measured stems were

identified to the level of family, genus or species by

J.B., based on personal knowledge, local names provided by

a highly experienced field assistant, and following Gentry

(1993) and Ribeiro et al. (1999). At the same time, we also

identified all common species of shrubs and saplings above

1 m in height and below 10 cm in DBH in twelve 1!50 m

subplots, with four subplots placed in each unburned and

burned forest treatment. We did not count bamboo stems or

other non-woody vegetation, although their abundance

varied considerably in different burned forests (figure 2).

Voucher specimens were not collected, and we restrict our

analysis of species composition to the most abundant stems

(defined as stems with a density greater than 10 trees haK1),

using a coarse-scale level of identification to emphasize the

broad patterns of compositional change and minimize error.

As we are primarily interested in evaluating patterns of

regeneration responses in terms of the abundance of stems

resulting from the most recent fire event, our examination of

changes in composition (table 1) focuses on the smaller stem

classes (10–20 cm in DBH) and saplings below 10 cm in

DBH. This analysis of a limited number of plots is designed

to provide a preliminary evaluation of patterns of change, and

present working hypotheses that can be tested by studies of

long-term forest dynamics based on marked trees, and by

wider-scale and well-replicated examinations of post-fire

regeneration across the Amazon Basin.



Table 1. Tree species and genera from the 10–20 cm DBH size class (and shrubs and saplings below 10 cm in DBH) which were
most abundant in each burn treatment, showing a high degree of turnover in community composition with each additional burn.
(All species (or genera) with a density greater than 10 trees haK1 are shown for trees 10 cm and above in DBH, and the most
abundant species in once-, twice- and thrice-burned forest plots are shown for saplings.)

species family

forest type
where most
abundant

trees (10–20 cm in DBH) haK1

unburned once-burned twice-burned thrice-burned

Protium and
Tetragastris spp.

Burseraceae unburned 69 15 2 2

Pouteria and others Sapotaceae unburned 17 13 0 0
Sclerolobium and

Tachigali spp.
Fabaceae unburned 17 4 0 0

Rinorea spp. Violaceae unburned 14 0 0 0
various genera Lauraceae unburned 12 2 4 0
Cecropia spp. Cecropiaceae once-burned 0 69 22 8
Jacaranda copaia Bignoniaceae once-burned 0 18 0 0
Pseudobombax sp. Malvaceae twice-burned 0 0 88 14
Inga spp. Fabaceae twice-burned 8 0 22 10
Tapirira sp. Anacardiaceae twice-burned 0 0 14 0
Cordia sp. Boraginaceae thrice-burned 1 2 0 30

saplings (!10 cm in DBH) per 200 m2

Palicourea guianensis Rubiaceae once-burned — 38 0 5
Aparisthmium

cordatum
Euphorbiaceae twice-burned — 13 79 12

Cordia sp. Boraginaceae thrice-burned — 4 5 30

Fire-mediated dieback in Amazonia J. Barlow & C. A. Peres 1789
3. RESULTS
(a) Changes in stem density

The stem density recorded in unburned primary

forest control sites was stable over time, and there was

no significant change in the total number of trees

recorded or in any of the five individual size classes

(figure 1a; Kruskall–Wallis tests, pO0.6 for all

comparisons within size classes). We therefore

compared the number of trees in each size class in

burned forest plots with the average number (across

years) of trees recorded in unburned primary forest

plots for the same size class.

In once-burned forests, there was a decline in the

abundance of live trees in both the smallest (10–20 cm

DBH) and largest (50 cm and above DBH) size classes

between 1 and 3 years after fire (figure 1b; see also

Barlow et al. (2003b), which include data from three

additional plots that had since been clear-cut and could

not be sampled in 2007). There was strong recruitment

into the 10–20 cm DBH size classes between 3 and 9

years post-fire, and the abundance of these smaller

stems was approaching the numbers recorded in

primary forests. There was little evidence of any

significant change in the abundance of stems in the

larger size classes (20 cm and above in DBH) between

3 and 9 years after the fires, although the variance

among replicate plots was high (figure 1b).

Within twice-burned forests, there was a marked

recruitment of stems into the 10–20 cm DBH size

class between 3 and 9 years post-fire. There was a

slight increase in stems 20–30 cm in DBH over the

same period, but no discernible trends were observed

in other size classes (figure 1c). Thrice-burned plots

that burned for the last time in 2001–2002 had fewer

trees across most size classes than twice-burned
Phil. Trans. R. Soc. B (2008)
forests, but this was especially noticeable in the

smaller (10–30 cm DBH) and larger (50 cm and

above DBH) size classes.
(b) Changes in stem composition

There was a clear pattern of tree community turnover

among the most common stems of small trees in the
10–20 cm DBH size class. For example, the dominant

morphospecies in unburned primary forests were

always substantially less abundant in once-burned

forests, and very scarce, if not entirely absent, in twice-

and thrice-burned forests (table 1). Once-burned forest

plots were dominated by long-lived pioneers, such as

Cecropia spp. and Jacaranda copaia, which were not

recorded in unburned primary forests and were either

much less abundant or absent from twice- and thrice-
burned forests (table 1). Twice-burned forests were

dominated by Pseudobombax sp., which was absent from

unburned and once-burned forests, and thrice-burned

forests were dominated by Cordia sp., which were only

infrequently recorded in other burn classes.

A similar pattern of plant community turnover was

evident with the shrubs and saplings (above 1 m tall

and below 10 cm in DBH), many of which reached

reproductive maturity in the understorey. The most
abundant species recorded in once-burned forests

(Palicourea guianensis) was rarely recorded elsewhere,

and the most abundant species in twice-burned forests

(Aparisthmium cordatum) was much less abundant in

once- and thrice-burned forests. Finally, the most

abundant species in thrice-burned forests (Cordia sp.)

was rarely encountered elsewhere in any of the

undisturbed or other fire-disturbed treatments

(table 1; figure 2).
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Figure 1. (a) The number of trees per hectare across five
different size classes in unburned primary forests sampled
in 1998–1999 (open bars), 2000–2001 (light grey bars) and
2007 (dark grey bars). (b) Average tree density proportional
to the level recorded in unburned forests in once-burned
forests sampled in 1998–1999 (years since most recent
fire: open bars, 1), 2000–2001 (light grey bars, 3) and
2007 (dark grey bars, 9). (c) Average tree density
proportional to the level recorded in primary forests in
twice-burned forests sampled in 2000–2001 (light grey
bars), twice-burned forests sampled in 2007 (dark
grey bars) and thrice-burned forests sampled in 2007
(black bars, 5). The dashed horizontal lines represent tree
density in unburned primary forest.

(a) (b)

(c) (d)

Figure 2. Understorey regeneration characterizing (a) intact
primary forests, (b) once-burned forests 9 years post-fire,
(c) twice-burned forests 9 years post-fire and (d ) thrice-
burned forests 5 years post-fire. Photos were taken in the
Arapiuns–Maró river basin in January 2007 by J.B.
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4. DISCUSSION
Data presented in this study provide novel insights

into the ecological consequences of repeated fire

disturbance in Amazonian seasonally dry forests.

Our principal observation is that repeated pulses of

fire-induced tree mortality lead to a rapid collapse in

the abundance of old-growth trees, and a community

turnover that is analogous to the ‘secondarization’ of

primary forests (figures 2 and 3), with significant

shifts in forest composition occurring with each
Phil. Trans. R. Soc. B (2008)
consecutive fire event. This fire-mediated cascade in

the species composition of Amazonian forests is

underpinned by five interrelated processes.

(i) Loss of primary forest species. Many studies have

documented the intrinsic vulnerability of

primary forest trees to fire stress (e.g. Uhl &

Kauffman 1990; Pinard & Huffman 1997;

Cochrane & Schulze 1999; Barlow et al.
2003a,b). Fires may promote the secondariza-

tion or impoverishment of large areas of forests

by acting as local extinction filters, extirpating

species that are unable to tolerate thermal

stress induced by fire contact. The conse-

quences of this sudden selective pressure in

core Amazonian forests are evident by the

generally lower rates of fire-mediated tree

mortality along the phytogeographic fringes of

the Amazon (see Barlow & Peres 2006a),

where forests close to savannah ecosystems

have been more frequently exposed to fire

disturbance.

(ii) Changes in forest regeneration patterns. Our

results suggest that episodic patterns of post-

burn tree recruitment are strongly influenced

by the number of times a forest had burned,

with a different suite of pioneer species

dominating the vegetation composition after

each fire event (table 1). This may be due to

the fire-induced destruction of the residual

seed bank, mortality of entire cohorts of
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Figure 3. Vertical cross-sectional profiles representing the
sequential ‘secondarization’ of repeatedly burned forests in
central Amazonia. This trajectory departs from (a) an
unburned closed-canopy forest to (b) a once-burned open-
canopy forest where nearly half of the canopy trees had been
either damaged or killed, to (c) a twice- or thrice-burned
forest that resembles young secondary forests growing on
degraded land. This forest secondarization process involves a
number of drastic changes in forest structure and compo-
sition, including severe loss of biomass, loss of vertical
structure resulting from upper canopy thinning and the loss of
emergent trees, hyper-proliferation of pioneers, rapid compo-
sitional turnover and seed-bank simplification (see text).
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pioneer species, post-burn availability of dia-
spore sources, seed and seedling predation, soil
infertility and competition with grasses and
ruderal species, all of which can alter the rates
of forest regrowth and biomass accumulation,
and, under extreme conditions, deflect or
arrest successional processes. Although these
patterns could also be explained by a stochastic
founder effect, with the most abundant species
being those that colonized first after each
recurrent fire, this alternative explanation is
less likely as it fails to explain the almost
complete absence of long-lived pioneers in
areas that have undergone recurrent fires.

(iii) Susceptibility of pioneer species to fire. The pulse of
plant recruitment dominated by long-lived
Phil. Trans. R. Soc. B (2008)
pioneers following low-intensity surface fires
provides a dense regrowth that may partly
compensate for the loss of primary forest tree
and liana species, even though the composition
and structure of the forest remains very different
from unburned forests (figures 1b and 2b).
However, these long-lived pioneer species are
themselves highly vulnerable to any subsequent
fire (which in any case tends to consume more
fuel and is more intensive). For example,
pioneers that were common in once-burned
forests (such as J. copaia and Cecropia spp.) were
much less abundant or entirely absent in forests
that had succumbed to recurrent fires (table 1).
These species also suffer some of the highest
mortality rates (compared with any tree species)
following low-intensity understorey fires in
other Amazonian primary forests (Pinard et al.
1999; Ivanauskas et al. 2003). The enhanced
susceptibility of the dominant tree species
regenerating after a single low-intensity fire
event increases the overall plant mortality rate
in forests that burn more intensively for a second
time, thus reinforcing the positive feedback cycle
in which recurrent fires erode the vegetation
structure of previously unburned forests (cf.
Cochrane et al. 1999; Nepstad et al. 1999).

(iv) Vulnerability of resprouting stems to fire. The
ability to resprout following disturbance pro-
vides many trees with a mechanism to survive
fire events, and these regenerating stems play a
crucial role in fostering a species-rich regen-
eration (Guariguata & Ostertag 2001).
However, these resprouting stems are them-
selves highly vulnerable to subsequent fire stress
(Uhl et al. 1981), further exacerbating the
process of impoverishment and secondarization
of tropical primary forests that undergo more
than one fire event.

(v) Changes in the availability of seed dispersal agents
and seed shadows. In addition to their direct
effects on forest structure and composition, fires
are likely to play a more subtle long-term role in
determining the future forest dynamics and
composition, as recurrent fires also have a
devastating effect on animal populations,
including many of the large-bodied vertebrates
that disperse large-seeded species (Peres et al.
2003; Barlow & Peres 2004, 2006b). Local
extinctions and population declines in mid-
sized to large-bodied frugivores—resulting
from both the short-term mortality in the
aftermath of fires and the long-term changes in
habitat quality (e.g. structure and food
supplies)—have both qualitative and quan-
titative consequences to patterns of seed dis-
persal in repeatedly burned forests. These are
likely to aggravate dispersal limitation of propa-
gules in many large-seeded endozoochorous
plants, while favouring small-seeded and wind-
dispersed plants (Stoner et al. 2007; Wright et al.
2007). This is essentially analogous to changes
in animal-mediated seed dispersal in compara-
tively better-understood scenarios of forests
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that were semi-defaunated by overhunting,
where the availability of seed vectors is depressed
without major changes in habitat structure
(Peres & Palacios 2007).
5. PATTERNS OF TREE MORTALITY
Our data from a small number of forest plots support
other tropical forest studies that demonstrate high
rates of post-fire tree mortality (See Barlow & Peres
(2006a) for a summary of mortality from 14 studies),
and provide further evidence that tree mortality may
be highest in both the smallest and largest size classes
(see also Williams et al. 1999; Barlow et al. 2003b). We
do not attempt to estimate the loss of forest biomass
(and committed carbon emissions) in this study, as
accurate estimates would require information on
(i) soil carbon pools, (ii) non-lethal tree damage,
(iii) lowered biomass of senescing trees (Chambers
et al. 2001), and (iv) wood density of different species
(particularly regenerating pioneers). However, these
data clearly demonstrate that forest fires have the
potential to offset any potential carbon sink from the
Amazon forest (cf. Barlow & Peres 2004) and further
contribute to increasing global carbon emissions
(Lewis 2006).
6. EVALUATING THE SAVANNIZATION
PARADIGM
Various terms have been used to describe the predicted
‘dieback’ of Amazonian forests. We recorded five
such terms stated by climatologists and forest ecolo-
gists at the fate of the Amazon conference in Oxford
(March 2007; this issue), including ‘savannization’,
‘pasteurization’, ‘desertification’, ‘secondarization’
and ‘scrubification’. Different terms are inevitable
where there is regional variability in the nature of
threats, and different authors have slightly different
world views on the nature of the process involved (cf.
Verstraete 1986). However, we argue that some of the
current terms describing climate-related ecosystem
transitions (such as savannization and desertification)
are misleading and technically inaccurate because their
outcomes are driven solely by the direct effects of
climate change on vegetation and they fail to consider
indirect mortality rates (mediated through fire).

It is our view that any increase in dry season length
brought about through climate change is highly likely to be
accompanied by widespread increases in forest flamm-
ability (Nepstad et al. 2004) and subsequent large-scale
fire events (e.g. Cochrane 2003; Aragão et al. 2008). It is
well established that these fires bring about severe
compositional and structural changes in Amazonian
forests (e.g. this study; Cochrane & Schulze 1998, 1999;
Barlow & Peres 2004). These changes are likely to be
significantly more severe than changes in forest structure
and composition that could occur through drought stress
under moderate scenarios of climate change, especially
considering that Amazonian forests appear to be more
resilient to drought stress than previously thought
(Nepstad et al. 2007; Saleska et al. 2007).

If we accept that fire will be an integral part of
climate-driven ecosystem change, then how would
Amazonian forests look in a hotter, drier future? Our
Phil. Trans. R. Soc. B (2008)
data provide a unique insight and suggest that recurrent
fires can lead to an ecosystem phase shift from pristine
closed-canopy primary forests to more open forests
dominated by short-lived pioneer species, which reflects
patterns observed in humid tropical forests disturbed by
logging, fires and edge effects elsewhere (Slik et al. 2002;
Santos et al. 2007). In particular, these forests are not
dominated by woody species typical of natural neotro-
pical savannahs (as implied by the savannization
paradigm), but are more similar to young secondary
forests regenerating on degraded lands. The changes
brought about by fire involve a number of drastic
alterations in forest structure and composition that
clearly mimics the ephemeral formation of young
second-growth stands, including a severe collapse in
forest phytomass, loss of vertical structure resulting from
severe upper canopy thinning and the loss of emergent
trees, hyper-proliferation of pioneers, rapid compo-
sitional turnover and seed-bank simplification (figure 3).
This structural collapse is accompanied by a severe
functional impoverishment in the life-history traits of
residual stands with profound consequences for ecosys-
tem services such as carbon retention and water cycling.
For example, the high diversity of slow-growing shade-
tolerant trees typical of unburned, old-growth forests
(e.g. large-seeded, emergent and hardwood tree species)
is rapidly replaced by a small dominant set of persistent,
fast-growing pioneer species that accrue a low biomass
due to their smaller size and low wood density.
7. CONCLUSION
This paper outlines the long-term consequences of forest
fires in one region of the Brazilian Amazon, and shows
how fires drastically alter forest structure and compo-
sition, leading to a rapid impoverishment of even
previously intact primary forests over a relatively short
period of time. Such fires are likely to have long-term
impactson tree species compositioneven if recurrentfires
can be prevented through effective fire suppression
practices. For example, many modern tropical forests
show evidence of catastrophic disturbance events (Baker
et al. 2005; Pitman et al. 2005), and compositional
recovery from forest disturbance, when observed over
longer time scales, is always slow and of the order of
hundreds of years, if not millennia (Turner et al. 1997;
Charles-Dominique et al. 2003; Pitman et al. 2005).

These results clearly highlight the importance of
preventing fires from spreading further into new
Amazonian forest frontiers. Although biomass burning
is widely practised by virtually all rural peoples in the
Amazon, it is also one of the few aspects of climate
change mitigation over which we retain some direct
control. Some small-scale agricultural projects have
been highly successful in reducing the use of fire in
Amazonian smallholdings (e.g. see Silva et al. (2006)
and the project ‘Roça sem queimar’). Expanding and
developing these projects to reduce the availability of
ignition sources should be an urgent conservation
priority over the coming decades.
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comments on the manuscript.
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